
Fractional Set Cover in the Streaming Model

Piotr Indyk
MIT

Sepideh Mahabadi
Columbia University

Ronitt Rubinfeld
MIT/TAU

Jonathan Ullman
Northeastern Univ

Ali Vakilian
MIT

Anak Yodpinyanee
MIT

Set Cover Problem
• Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a subset

of 𝒰𝒰 = {1, … ,𝑛𝑛}

2

1

4

5
2

3

Set Cover Problem
• Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a subset

of 𝒰𝒰 = {1, … ,𝑛𝑛}

3

1

4

5
2

3

Set Cover Problem
• Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a subset

of 𝒰𝒰 = {1, … ,𝑛𝑛}
• Output: a subset 𝒞𝒞 of ℱ such that:

o𝒞𝒞 covers 𝒰𝒰
o |𝒞𝒞| is minimized

4

1

4

5
2

3

Set Cover Problem
• Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a subset

of 𝒰𝒰 = {1, … ,𝑛𝑛}
• Output: a subset 𝒞𝒞 of ℱ such that:

o𝒞𝒞 covers 𝒰𝒰
o |𝒞𝒞| is minimized

• Complexity:
oNP-hard

5

1

4

5
2

3

Set Cover Problem
• Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a subset

of 𝒰𝒰 = {1, … ,𝑛𝑛}
• Output: a subset 𝒞𝒞 of ℱ such that:

o𝒞𝒞 covers 𝒰𝒰
o |𝒞𝒞| is minimized

• Complexity:
oNP-hard
oGreedy (ln𝑛𝑛)-approximation algorithm

6

1

4

5
2

3

Set Cover Problem
• Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a subset

of 𝒰𝒰 = {1, … ,𝑛𝑛}
• Output: a subset 𝒞𝒞 of ℱ such that:

o𝒞𝒞 covers 𝒰𝒰
o |𝒞𝒞| is minimized

• Complexity:
oNP-hard
oGreedy (ln𝑛𝑛)-approximation algorithm
oCan’t do better unless P=NP

[LY91][RS97][Fei98][AMS06][DS14]

7

1

4

5
2

3

Streaming Set Cover
• Model [SG09]

o Elements are store in the main memory

8

1 4 52 3

Memory

Streaming Set Cover
• Model [SG09]

o Elements are store in the main memory
o Sequential access to 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑚𝑚

9

1 4 52 3

1,3 4 2,5 1,2,4,5 …

Memory

Streaming Set Cover
• Model [SG09]

o Elements are store in the main memory
o Sequential access to 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑚𝑚
1. One (or few) passes
2. Sublinear (i.e., 𝑜𝑜(𝑚𝑚𝑛𝑛)) storage
3. (Hopefully) decent approximation factor

10

1 4 52 3

1,3 4 2,5 1,2,4,5 …

Memory: sublinear in (𝒎𝒎𝒎𝒎)

Streaming Set Cover
• Model [SG09]

o Elements are store in the main memory
o Sequential access to 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑚𝑚
1. One (or few) passes
2. Sublinear (i.e., 𝑜𝑜(𝑚𝑚𝑛𝑛)) storage
3. (Hopefully) decent approximation factor

• Why?
o A classic optimization problem
o Application in “Big Data”: Clustering, Topic Coverage

11

1 4 52 3

1,3 4 2,5 1,2,4,5 …

Memory: sublinear in (𝒎𝒎𝒎𝒎)

Fractional Set Cover
• Each set can be picked fractionally (assigning value
𝑥𝑥𝑖𝑖 ∈ [0,1] to each set 𝑆𝑆𝑖𝑖)

• The first step in solving covering LPs in stream
oPacking LP (Fractional Maximum Matching)[AG11]

Fractional Solution
of Set Cover

(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑚𝑚)

Randomized
Rounding

Pick 𝑆𝑆𝑖𝑖 w.p. ∝ 𝑥𝑥𝑖𝑖log𝑛𝑛

𝑂𝑂(log𝑛𝑛)-approximate
Integral Solution

Previous and Our Results

INTEGRAL SET COVER Approximation Passes Space

Greedy Algorithm
𝑂𝑂(log𝑛𝑛)
𝑂𝑂(log𝑛𝑛)

1
𝑛𝑛

𝑂𝑂(𝑚𝑚𝑛𝑛)
𝑂𝑂(𝑛𝑛)

[SG09] 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(log𝑛𝑛) �𝑂𝑂(𝑛𝑛)

[ER14, CW16]
𝑂𝑂(𝑛𝑛𝛿𝛿/𝛿𝛿)

⁄1 𝛿𝛿 − 1 �𝑂𝑂(𝑛𝑛)
Ω(𝑛𝑛𝛿𝛿/𝛿𝛿2)

[DIMV14, HIMV16, BEM17] 𝑂𝑂(⁄𝜌𝜌 𝛿𝛿) 𝑂𝑂(⁄1 𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)
[AKL16, A17] 1/𝛿𝛿 polylog �Ω(𝑚𝑚𝑛𝑛𝛿𝛿)

𝑛𝑛 = number of elements
𝑚𝑚 = number of sets

𝜌𝜌 = approximation factor for offline Set Cover

FRACTIONAL SET COVER 1 + 𝜺𝜺 𝑂𝑂(1/𝛿𝛿) �𝑂𝑂(𝑚𝑚𝑛𝑛𝑶𝑶(𝜹𝜹/𝜺𝜺))

�𝑂𝑂 𝑓𝑓 𝑚𝑚,𝑛𝑛 = 𝑂𝑂(𝑓𝑓 𝑚𝑚,𝑛𝑛 𝜀𝜀−𝑐𝑐log𝑐𝑐 𝑚𝑚 log𝑐𝑐 𝑛𝑛)

𝛿𝛿 < 1

This Talk

Theorem: there exists a (1 + 𝜖𝜖) approximation algorithm for the fractional
set cover problem in the streaming setting, with 𝑑𝑑 passes, that uses
�𝑂𝑂(𝑚𝑚𝑛𝑛𝑂𝑂(1𝑑𝑑𝑑𝑑) + 𝑛𝑛) space.

The Plan
• The Multiplicative Weight Update framework

o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝑘𝑘 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

The Plan
• The Multiplicative Weight Update framework

o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝑘𝑘 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

• 𝑇𝑇 = O(𝜙𝜙 log𝑛𝑛 /𝜖𝜖2)

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0
𝑤𝑤1 ← (1,⋯ , 1) ⊳ uniform weights
For 𝑡𝑡 = 1, 𝑡𝑡 ≤ 𝑇𝑇 do ⊳ T iterations

𝑥𝑥𝑡𝑡 ← solution of Oracle ⊳ avg constraint w.r.t. 𝑤𝑤𝑡𝑡

𝑤𝑤𝑡𝑡+1 ← 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡)
⊳ decrease weight of constraints oversatisfied by 𝑥𝑥𝑡𝑡

�̅�𝑥 = 𝐔𝐔𝐚𝐚𝐚𝐚(𝑥𝑥1,⋯𝑥𝑥𝑇𝑇)

MWU Update Rule:
𝑤𝑤𝑒𝑒𝑡𝑡+1 ≔ 𝑤𝑤𝑒𝑒𝑡𝑡 1− 𝜺𝜺/𝝓𝝓 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒

∀𝑖𝑖: 𝐴𝐴𝑒𝑒�̅�𝑥 ≥ 𝑏𝑏𝑒𝑒 − 𝜀𝜀

∀𝑖𝑖, 𝑡𝑡:−𝜙𝜙 ≤ 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒 ≤ 𝜙𝜙

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

MWU to solve LP

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0
𝑤𝑤1 ← (1,⋯ , 1) ⊳ uniform weights
For 𝑡𝑡 = 1, 𝑡𝑡 ≤ 𝑇𝑇 do ⊳ T iterations

𝑥𝑥𝑡𝑡 ← solution of Oracle ⊳ avg constraint w.r.t. 𝑤𝑤𝑡𝑡

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0
𝑤𝑤1 ← (1,⋯ , 1) ⊳ uniform weights
For 𝑡𝑡 = 1, 𝑡𝑡 ≤ 𝑇𝑇 do ⊳ T iterations

𝑥𝑥𝑡𝑡 ← solution of Oracle ⊳ avg constraint w.r.t. 𝑤𝑤𝑡𝑡

𝑤𝑤𝑡𝑡+1 ← 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡)
⊳ decrease weight of constraints oversatisfied by 𝑥𝑥𝑡𝑡

�̅�𝑥 = 𝐔𝐔𝐚𝐚𝐚𝐚(𝑥𝑥1,⋯𝑥𝑥𝑇𝑇)

MWU Update Rule:
𝑤𝑤𝑒𝑒𝑡𝑡+1 ≔ 𝑤𝑤𝑒𝑒𝑡𝑡 1− 𝜺𝜺/𝝓𝝓 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

• 𝑇𝑇 =

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0
𝑤𝑤1 ← (1,⋯ , 1) ⊳ uniform weights
For 𝑡𝑡 = 1, 𝑡𝑡 ≤ 𝑇𝑇 do ⊳ T iterations

𝑥𝑥𝑡𝑡 ← solution of Oracle ⊳ avg constraint w.r.t. 𝑤𝑤𝑡𝑡

𝑤𝑤𝑡𝑡+1 ← 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡)
⊳ decrease weight of constraints oversatisfied by 𝑥𝑥𝑡𝑡

�̅�𝑥 = 𝐔𝐔𝐚𝐚𝐚𝐚(𝑥𝑥1,⋯𝑥𝑥𝑇𝑇)

MWU Update Rule:
𝑤𝑤𝑒𝑒𝑡𝑡+1 ≔ 𝑤𝑤𝑒𝑒𝑡𝑡 1− 𝜺𝜺/𝝓𝝓 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒

∀𝑖𝑖: 𝐴𝐴𝑒𝑒�̅�𝑥 ≥ 𝑏𝑏𝑒𝑒 − 𝜀𝜀

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

• 𝑇𝑇 = O(𝜙𝜙 log𝑛𝑛 /𝜖𝜖2)

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0
𝑤𝑤1 ← (1,⋯ , 1) ⊳ uniform weights
For 𝑡𝑡 = 1, 𝑡𝑡 ≤ 𝑇𝑇 do ⊳ T iterations

𝑥𝑥𝑡𝑡 ← solution of Oracle ⊳ avg constraint w.r.t. 𝑤𝑤𝑡𝑡

𝑤𝑤𝑡𝑡+1 ← 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡)
⊳ decrease weight of constraints oversatisfied by 𝑥𝑥𝑡𝑡

�̅�𝑥 = 𝐔𝐔𝐚𝐚𝐚𝐚(𝑥𝑥1,⋯𝑥𝑥𝑇𝑇)

MWU Update Rule:
𝑤𝑤𝑒𝑒𝑡𝑡+1 ≔ 𝑤𝑤𝑒𝑒𝑡𝑡 1− 𝜺𝜺/𝝓𝝓 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒

∀𝑖𝑖: 𝐴𝐴𝑒𝑒�̅�𝑥 ≥ 𝑏𝑏𝑒𝑒 − 𝜀𝜀

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

• 𝑇𝑇 = O(𝜙𝜙 log𝑛𝑛 /𝜖𝜖2)

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0
𝑤𝑤1 ← (1,⋯ , 1) ⊳ uniform weights
For 𝑡𝑡 = 1, 𝑡𝑡 ≤ 𝑇𝑇 do ⊳ T iterations

𝑥𝑥𝑡𝑡 ← solution of Oracle ⊳ avg constraint w.r.t. 𝑤𝑤𝑡𝑡

𝑤𝑤𝑡𝑡+1 ← 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡)
⊳ decrease weight of constraints oversatisfied by 𝑥𝑥𝑡𝑡

�̅�𝑥 = 𝐔𝐔𝐚𝐚𝐚𝐚(𝑥𝑥1,⋯𝑥𝑥𝑇𝑇)

MWU Update Rule:
𝑤𝑤𝑒𝑒𝑡𝑡+1 ≔ 𝑤𝑤𝑒𝑒𝑡𝑡 1− 𝜺𝜺/𝝓𝝓 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒

∀𝑖𝑖: 𝐴𝐴𝑒𝑒�̅�𝑥 ≥ 𝑏𝑏𝑒𝑒 − 𝜀𝜀

∀𝑖𝑖, 𝑡𝑡:−𝜙𝜙 ≤ 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒 ≤ 𝜙𝜙

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝑘𝑘 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

Multiplicative Weight Update (Set Cover)

SET-COVER LP(ℱ, 𝒰𝒰):

Min ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆

s.t. ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 ∀𝑒𝑒 ∈ 𝒰𝒰
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(ℱ, 𝒰𝒰, 𝑘𝑘)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

s.t. ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 ∀𝑒𝑒 ∈ 𝒰𝒰
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Feasibility-SET-COVER LP(ℱ, 𝒰𝒰, 𝑘𝑘)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

s.t. ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 ∀𝑒𝑒 ∈ 𝒰𝒰
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approximately!

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approximately!

Feasibility-SET-COVER LP(ℱ, 𝒰𝒰, 𝑘𝑘)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒 ∑𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒 ∑𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ∑𝑒𝑒∈𝑆𝑆𝑤𝑤𝑒𝑒 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑤𝑤𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒 Define 𝑤𝑤𝑆𝑆 ≔ ∑𝑒𝑒∈𝑆𝑆𝑤𝑤𝑒𝑒

By normalizing weight vector w (prob. vector 𝑝𝑝):
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approximately!

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−𝜙𝜙 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 𝜙𝜙 ∀𝑒𝑒 ∈ 𝒰𝒰

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approx. w.r.t 𝑝𝑝𝑡𝑡(∝ 𝑤𝑤𝑡𝑡): 𝒙𝒙𝒕𝒕

Update the prob vector

𝒑𝒑𝒆𝒆𝒕𝒕+𝟏𝟏 ≔ 𝒑𝒑𝒆𝒆𝒕𝒕 (𝟏𝟏 − 𝑶𝑶 𝜺𝜺 × ∑𝒙𝒙𝑺𝑺𝒕𝒕 − 𝟏𝟏)

T times

MWU Theorem. After 𝑇𝑇 = 𝑂𝑂(𝜙𝜙 log 𝑛𝑛
𝜀𝜀2

) rounds,

�̅�𝑥 = 1
𝑇𝑇

(𝑥𝑥1 + ⋯+ 𝑥𝑥𝑡𝑡) is an 𝜀𝜀-feasible solution.

∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 − 𝜀𝜀 ∀𝑒𝑒 ∈ 𝒰𝒰

Width of
oracle

Bounding the max number of times
an element gets covered

Finally, we can then pick 𝑘𝑘(1 + 𝜖𝜖) sets to cover
all the elements!

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝑘𝑘 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

Given: a probability vector 𝑝𝑝 on the elements, and 𝑘𝑘
Goal: pick (fractionally) 𝑘𝑘 sets by assigning values to 𝑥𝑥𝑆𝑆 such that

1. The total probability (weight) of the sets in the solution is maximized,
i.e., at least (1 − 𝜀𝜀), where
 probability of a set is the sum of the probability of its elements, i.e.,
𝑝𝑝𝑆𝑆 = ∑𝑒𝑒∈𝑆𝑆 𝑝𝑝𝑒𝑒

2. The width (total number of times any element is covered) is small.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−𝜙𝜙 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 𝜙𝜙 ∀𝑒𝑒 ∈ 𝒰𝒰

The Oracle

Initial plan:
• solve the Oracle in one pass

and low space,
• gives an algorithm for set

cover with 𝑇𝑇 passes and
low space.

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝑘𝑘 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

Implementing MWU in Stream (I)

• Naïve solution for the oracle:

• Width (the number of times an element is covered)
is trivially 𝑘𝑘

• The number of required rounds to obtain (1 + 𝜖𝜖)-
approximation is 𝑂𝑂(𝑘𝑘 log 𝑛𝑛

𝜀𝜀2
)

• Streaming: find the heaviest set w.r.t 𝒑𝒑 in a single
pass over the stream

𝑥𝑥𝑆𝑆 = �𝑘𝑘0
If S is the heaviest set,

Otherwise.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−𝜙𝜙 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 𝜙𝜙 ∀𝑒𝑒 ∈ 𝒰𝒰

(1 + 𝜀𝜀)-approximation
𝑂𝑂(�𝑘𝑘 log 𝑛𝑛

𝜀𝜀2) passes
�𝑂𝑂(𝑛𝑛) space

Performance

Challenge:
Is it possible to find a solution to the
oracle with smaller width?

No, simply all sets may contain a
designated element e and hence
the width of any solution to the
oracle is always k no matter how
the solution is picked.

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝑘𝑘 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝑘𝑘 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

Extended Set System

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

ℱ = { 1,2,3 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

1,2,3 , 3,4,5
}

Challenge:
Is it possible to find a solution to the
oracle in set system (𝒰𝒰,ℱ) with
smaller width?

No, simply all sets may contain a
designated element e and hence
the width of any solution to the
oracle is always k no matter how
the solution is picked.

Extended Set System

 The size of an optimal cover in
both set systems are the same. Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

ℱ = { 1,2,3 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

1,2,3 , 3,4,5
}

Extended Set System

ℱ = { 1,2,3 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

1,2,3 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.

Extended Set System

ℱ = { 1,2,3 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

1,2,3 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

ℱ = { 𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

ℱ = { 1,2,3 , 𝟑𝟑,𝟒𝟒,𝟓𝟓 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

ℱ = { 1,2,3 , 3,4,5 , {𝟐𝟐,𝟔𝟔}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {𝟔𝟔}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

• Idea: Pruning the cover

ℱ = { 1,2,3 , 3,4,5 , {𝟐𝟐,𝟔𝟔}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {𝟔𝟔}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Extended Set System

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

• Idea: Pruning the cover

 Extended Set System has
exponentially many sets

• Work with the original set
system,

• Solve the oracle on ℱ but and
convert it to a solution for �ℱ

ℱ = { 1,2,3 , 3,4,5 , {𝟐𝟐,𝟔𝟔}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {𝟔𝟔}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Implementing MWU in Stream (II)
• We want to solve the oracle for (𝒰𝒰, �ℱ)

o Find some solution for the oracle (𝒰𝒰,ℱ),
o Prune it to get a solution for (𝒰𝒰, �ℱ)

 Obtains width = 1
 The average constraint may not be satisfied any more!

• Instead find a solution that maximizes coverage
 Coverage remains unchanged after pruning
o There is a cover of size 𝑘𝑘,
 The solution of maximum 𝑘𝑘-coverage satisfies the average constraint of the

set cover too; even after the pruning: ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰 𝑝𝑝𝑒𝑒 = 1

e.g., 𝑥𝑥𝑆𝑆 = �1
0

If S is one of the k heaviest set,
Otherwise.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−1 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

Next Goal:
Given a set system (𝒰𝒰,ℱ), and a
parameter 𝑘𝑘 , solve the (weighted)
fractional Max k-Cover in one pass

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝑘𝑘 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

Max k-Cover Problem

Input: a collection ℱ of sets S1, ..., Sm
Each S ⊆ 𝒰𝒰 = {1, … ,𝑛𝑛}

Output: k sets of ℱ such that:
Maximizes the total coverage;
|⋃𝑆𝑆∈𝒞𝒞𝑆𝑆|

Complexity:
• NP-hard
• Greedy: (1 − 1

e
)-approximation

• One pass (1 − 𝜀𝜀)-approx. using
�𝑂𝑂(𝑚𝑚/𝜀𝜀2) space [MV17], [BEM17]

Max-Cover-LP(ℱ, 𝒰𝒰, 𝑘𝑘)

Max. ∑𝑒𝑒∈𝒰𝒰 𝑧𝑧𝑒𝑒

s.t. ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘
∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 𝑧𝑧𝑒𝑒 ∀𝑒𝑒 ∈ 𝒰𝒰

𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ
𝑧𝑧𝑒𝑒 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

Fractional Max k-Cover

Max-Cover-LP(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

Max. ∑𝑒𝑒∈𝒰𝒰 𝑝𝑝𝑒𝑒𝑧𝑧𝑒𝑒

s.t. ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘
∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 𝑧𝑧𝑒𝑒 ∀𝑒𝑒 ∈ 𝒰𝒰

𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ
𝑧𝑧𝑒𝑒 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

Weighted Max k-Cover Problem

Input: a collection ℱ of sets S1, ..., Sm
Each S ⊆ 𝒰𝒰 = {1, … ,𝑛𝑛}

Output: k sets of ℱ such that:
Maximizes the total coverage;
|⋃𝑆𝑆∈𝒞𝒞𝑆𝑆|

Complexity:
• NP-hard
• Greedy: (1 − 1

e
)-approximation

• One pass (1 − 𝜀𝜀)-approx. using
�𝑂𝑂(𝑚𝑚/𝜀𝜀2) space [MV17], [BEM17]

Fractional (Weighted) Max k-Cover

Fractional Max k-Cover in One Pass
• Component I (Element Sampling):

1. Sample �𝑂𝑂(𝑘𝑘
𝜀𝜀2

) elements in 𝑈𝑈′ according to 𝒑𝒑.
2. In one pass over the stream: Store ℱ′, the intersection of all sets

in ℱ with 𝑈𝑈′

3. Return the best k-cover of the sampled elements.
o w.h.p. the constructed cover is a (1 − 𝜀𝜀)-approximate solution of

the main instance.
o Required space: �𝑂𝑂(𝑚𝑚𝑘𝑘/𝜀𝜀2)

• Component II (Covering Common Elements):

o In the preprocessing step, pick 𝑥𝑥cmn= 𝜀𝜀𝑘𝑘
𝑚𝑚

, … , 𝜀𝜀𝑘𝑘
𝑚𝑚

o All frequently occurring elements will be covered.
o We can focus on elements with degree ≤ 𝑚𝑚

𝜀𝜀𝑘𝑘

o Required space: �𝑂𝑂 𝑚𝑚
𝜀𝜀𝑘𝑘

× 𝑘𝑘
𝜀𝜀2

= �𝑂𝑂(𝑚𝑚/𝜀𝜀3)

The pruning
We have:
• Solution �⃗�𝑥 on the original set system 𝑈𝑈,ℱ
• The coverage 𝑦𝑦𝑒𝑒 ∶= ∑𝑆𝑆∋𝑒𝑒 𝑥𝑥𝑆𝑆 of every element by the solution of the original set

system �⃗�𝑥 can be computed in one pass.

We need:

• Convert �⃗�𝑥 to a solution 𝑥𝑥𝑥 on the extended set system (𝑈𝑈, �ℱ) so that 𝑥𝑥𝑥 can be
averaged in the end of the 𝑇𝑇 iterations.

• The coverage 𝑦𝑦𝑒𝑒′ ∶= ∑𝑆𝑆∋𝑒𝑒 𝑥𝑥𝑆𝑆𝑥 by the solution 𝑥𝑥𝑥 to update the weights of MWU
o 𝒑𝒑𝒆𝒆𝒕𝒕+𝟏𝟏 ≔ 𝒑𝒑𝒆𝒆𝒕𝒕 𝟏𝟏 − 𝑶𝑶 𝜺𝜺 × 𝒚𝒚𝒆𝒆𝑥 − 𝟏𝟏

The Pruning: needs to be done fractionally.

Lemma: There exists a polynomial time algorithm to prune the fractional
solution �⃗�𝑥 of the maximum coverage on (𝑈𝑈,ℱ) to get a solution 𝑥𝑥𝑥 of (𝑈𝑈, �ℱ)
s.t. the coverage of every element is capped by 1, i.e., 𝑦𝑦𝑒𝑒𝑥 = Min(𝑦𝑦𝑒𝑒 , 1).

Implementing MWU in Stream (II)

• Solve fractional Max 𝑘𝑘 Cover in one pass find �⃗�𝑥 and in one pass 𝑦𝑦𝑒𝑒

• Obtain 𝑥𝑥𝑥 and 𝑦𝑦𝑒𝑒′ using the lemma.

• 𝑥𝑥𝑥 satisfies the average constraint.

• Update the probabilities according to 𝑦𝑦𝑒𝑒′

• width is 1

• The number of required rounds of MWU is 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2

)

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−1 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

(1 + 𝜖𝜖)-approximation
𝑂𝑂(�log 𝑛𝑛

𝜀𝜀2) passes
�𝑂𝑂(⁄𝑚𝑚 𝜀𝜀3) space

Performance

Challenge:
Can we run several rounds of MWU in
one pass of the streaming algorithm?

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝑘𝑘 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

(1 + 𝜀𝜀)-appx 𝑂𝑂(�log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑚𝑚/𝜖𝜖3)-space

Component I (Element Sampling):
Sample �𝑂𝑂(𝑘𝑘

𝜀𝜀2
) elements according to 𝒑𝒑.

Return the best k-cover of the sampled
elements.

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
× But probability distribution 𝑝𝑝 changes over the iterations
× Element sampling is done w.r.t. 𝑝𝑝

Key observation:
The probability vector 𝑝𝑝 changes slowly.

After ℓ rounds of MWU:

𝑝𝑝𝑒𝑒𝑡𝑡+ℓ ≤ 𝑝𝑝𝑒𝑒𝑡𝑡 1 + 𝑂𝑂 𝜀𝜀 ℓ

Setting ℓ = 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

) rounds, 𝑝𝑝𝑒𝑒

increases at most by 𝑛𝑛𝑂𝑂(1𝜀𝜀𝑑𝑑)

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
× But probability distribution 𝑝𝑝 changes over the iterations
× Element sampling is done w.r.t. 𝑝𝑝

Setting ℓ = 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

) rounds, 𝑝𝑝𝑒𝑒

increases at most by 𝑛𝑛𝑂𝑂(1𝜀𝜀𝑑𝑑)
Component I (Element Sampling):

Sample �𝑂𝑂(𝑘𝑘𝑛𝑛
𝑂𝑂(1/𝜀𝜀𝑑𝑑)

𝜀𝜀2
) elements according to 𝒑𝒑.

Return the best k-cover of the sampled
elements.

To perform 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

)
rounds together Rejection Sampling: To

adjust the probability 𝑝𝑝𝑒𝑒 Keep each
sample w.p.

⁄𝑝𝑝𝑒𝑒𝑡𝑡+ℓ 𝑝𝑝𝑒𝑒𝑡𝑡𝑛𝑛𝑂𝑂(1/𝜀𝜀𝑑𝑑)

Key observation:
The probability vector 𝑝𝑝 changes slowly.

After ℓ rounds of MWU:
𝑝𝑝𝑒𝑒𝑡𝑡+ℓ ≤ 𝑝𝑝𝑒𝑒𝑡𝑡 1 + 𝑂𝑂 𝜀𝜀 ℓ

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
× But probability distribution 𝑝𝑝 changes over the iterations
× Element sampling is done w.r.t. 𝑝𝑝

Space increases by 𝑛𝑛𝑂𝑂(1/𝜀𝜀𝑑𝑑)

#passes decreases by 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

)

Setting ℓ = 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

) rounds, 𝑝𝑝𝑒𝑒

increases at most by 𝑛𝑛𝑂𝑂(1𝜀𝜀𝑑𝑑)
Component I (Element Sampling):

Sample �𝑂𝑂(𝑘𝑘𝑛𝑛
𝑂𝑂(1/𝜀𝜀𝑑𝑑)

𝜀𝜀2
) elements according to 𝒑𝒑.

Return the best k-cover of the sampled
elements.

Key observation:
The probability vector 𝑝𝑝 changes slowly.

After ℓ rounds of MWU:
𝑝𝑝𝑒𝑒𝑡𝑡+ℓ ≤ 𝑝𝑝𝑒𝑒𝑡𝑡 1 + 𝑂𝑂 𝜀𝜀 ℓ

Rejection Sampling: To
adjust the probability 𝑝𝑝𝑒𝑒

Implementing MWU in Stream (II)
• Algorithm will go over 𝑑𝑑 passes:

o Sample �𝑂𝑂(𝑘𝑘𝑛𝑛
𝑂𝑂(1/𝜀𝜀𝑑𝑑)

𝜀𝜀2
) elements for each of the 𝑂𝑂 log 𝑛𝑛

𝜖𝜖2𝑑𝑑
rounds assigned to

this pass.
o In one pass find the projection of all sets on these sampled elements in
�𝑂𝑂 𝑚𝑚𝑛𝑛𝑂𝑂(1/𝑑𝑑𝜀𝜀) space. (this uses the common element component).

o For each of the 𝑂𝑂 log 𝑛𝑛
𝜖𝜖2𝑑𝑑

rounds.

 Adjust the samples properly.
 Solve fractional Max 𝑘𝑘 Cover find 𝑥𝑥𝑆𝑆
 Update the probabilities for all the sampled elements

o In one pass update the probabilities for all the elements.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−1 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

(1 + 𝜀𝜀)-approximation
𝑂𝑂(𝑑𝑑) passes
�𝑂𝑂(𝑚𝑚𝑛𝑛𝑂𝑂(1/𝑑𝑑𝜀𝜀)) space

Performance

The Plan

• The Multiplicative Weight Update framework
o MWU for the Set Cover
o The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
o Reducing Width via Extended Set System
o Fractional Max k-Cover

• Reducing the number of passes to a constant
o Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝑘𝑘 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

(1 + 𝜀𝜀)-appx 𝑂𝑂(�log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑚𝑚/𝜖𝜖3)-space

(1 + 𝜀𝜀)-appx 𝑂𝑂(𝑝𝑝)-pass �𝑂𝑂(𝑚𝑚𝑛𝑛𝑂𝑂(1/𝑑𝑑𝜀𝜀))-space

(1 + 𝜀𝜀)-approximation
𝑂𝑂(𝑘𝑘 log𝑛𝑛 /𝜖𝜖2) passes
�𝑂𝑂(𝑛𝑛) space

Performance

Summary
• Considered MWU for solving fractional-Set Cover

 One pass for each of the 𝑂𝑂(𝜙𝜙 log 𝑛𝑛
𝜖𝜖2

) iterations.

 Trivial solution gets 𝜙𝜙 = 𝑘𝑘 giving 𝑂𝑂(𝑘𝑘 log 𝑛𝑛
𝜖𝜖2

)
 No way to reduce the width to smaller than 𝑘𝑘.

• Change the set system to extended set system.
 Solution remains the same.
 Goal changes to weighted maximum coverage that

is preserved under the pruning.

 Obtain 𝜙𝜙 = 1 giving 𝑂𝑂(log 𝑛𝑛
𝜖𝜖2

) pass algorithm

• Run several rounds of MWU together
 The probabilities change slowly over iterations.
 Sample more elements in advance and adjust the

probability.
 Get constant pass algorithm.

(1 + 𝜀𝜀)-approximation
𝑂𝑂(𝑑𝑑) passes
�𝑂𝑂(𝑚𝑚𝑛𝑛𝑂𝑂(1/𝑑𝑑𝜀𝜀)) space

Performance

(1 + 𝜖𝜖)-approximation
𝑂𝑂(�log 𝑛𝑛

𝜀𝜀2) passes
�𝑂𝑂(⁄𝑚𝑚 𝜀𝜀3) space

Performance

Open Questions
• Open Questions:

1. Better bound for general covering/packing LP?
2. Any constant pass polylog-approximation algorithm for Weighted

Set Cover with 𝑜𝑜 𝑚𝑚𝑛𝑛 space ?
3. Optimal number of passes for O(log n)-approx. Set Cover?

I. Best Upper Bound: O(log n)-pass
II. Best Lower Bound: Ω(log 𝑛𝑛

log log 𝑛𝑛)-pass [CW16]

	Slide Number 1
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Streaming Set Cover
	Streaming Set Cover
	Streaming Set Cover
	Streaming Set Cover
	Fractional Set Cover
	Previous and Our Results
	This Talk
	 The Plan
	 The Plan
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	 The Plan
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	 The Plan
	The Oracle
	 The Plan
	Implementing MWU in Stream (I)
	 The Plan
	 The Plan
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Implementing MWU in Stream (II)
	 The Plan
	Max k-Cover Problem
	Weighted Max k-Cover Problem
	Fractional Max k-Cover in One Pass
	The pruning
	Implementing MWU in Stream (II)
	 The Plan
	Reducing the Number of Passes Further!
	Reducing the Number of Passes Further!
	Reducing the Number of Passes Further!
	Implementing MWU in Stream (II)
	 The Plan
	Summary
	Open Questions

